精英家教网 > 高中数学 > 题目详情

【题目】调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到yx的回归直线方程: =0. 254x+0. 321. 由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.

【答案】0.254
【解析】当 变为 时, =0.245(x+1)+0.321=0.245x+0.321+0.245,而0.245x+0.321+0.245-(0.245x+0.321)=0.245.因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元,本题填写0.245.由题意可知,当x变为x+1时,将x+1代入回归直线方程,由此可以得到年饮食的平均增加。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则y=f(x)的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若曲线y=f(x)在P(1,f(1))处的切线平行于直线y=﹣x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对任意x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|ax﹣4|﹣|ax+8|,a∈R
(Ⅰ)当a=2时,解不等式f(x)<2;
(Ⅱ)若f(x)≤k恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中,平面 平面 为等边三角形, 分别为 的中点.

(1)求证: 平面 .
(2)求证:平面 平面 .
(3)求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣ax2+(a2﹣1)x+b(a,b∈R),其图象在点(1,f(1))处的切线方程为x+y﹣3=0.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并求出f(x)在区间[﹣2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在 上运动(如图).若 ,其中λ,μ∈R,则6λ+μ的取值范围是(
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.

求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判定下列函数的奇偶性.
(1)f(x)=
(2)f(x)=
(3)f(x)=
(4)f(x)=|x+1|+|x-1|.

查看答案和解析>>

同步练习册答案