精英家教网 > 高中数学 > 题目详情

已知数列满足且对一切,

(Ⅰ)求证:对一切

(Ⅱ)求数列通项公式.   

(Ⅲ)求证:

【解析】第一问利用,已知表达式,可以得到,然后得到,从而求证 。

第二问,可得数列的通项公式。

第三问中,利用放缩法的思想,我们可以得到

然后利用累加法思想求证得到证明。

解:  (1) 证明:

 

 

【答案】

见解析

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知数列{an}满足a1=1,a2=3,an+1=4an-3an-1(n∈N*且n≥2)
(Ⅰ)证明数列{an+1-an}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn,且对一切n∈N*,都有
b1
a1
+
b2
2a2
+…+
bn
nan
=2n+1
成立,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年新建二中三模文)已知数列满足,且对一切,有,其中.

   (Ⅰ)求数列的通项公式;             (Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列满足,且对一切,其中

(Ⅰ)求证对一切,并求数列的通项公式;

(Ⅱ)记,求数列的前项和;

(Ⅲ)求证

查看答案和解析>>

科目:高中数学 来源:2010年河南省鹤壁市高二下学期第一次段考数学试题 题型:解答题

已知数列满足
(1) 证明:
(2) 比较an­的大小;
(3) 是否存在正实数c,使得,对一切恒成立?若存在,则求出c的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案