精英家教网 > 高中数学 > 题目详情
在△ABC中,
sinA
a
=
3
cosB
b

(Ⅰ)求角B的值;
(Ⅱ)如果b=2,求△ABC面积的最大值.
考点:正弦定理的应用
专题:三角函数的求值,解三角形
分析:(Ⅰ)由正弦定理知:
a
sinA
=
b
sinB
=
b
3
cosB
,可得sinB=
3
cosB,即有tanB=
3
可求得B的值;
(Ⅱ)由(Ⅰ)知,sinB=
3
2
,a=
4
3
3
sinA,A=
3
-C
从而有S△ABC=
1
2
sin(2C-
π
6
)+
1
4
3
4
解答: 解:(Ⅰ)∵
sinA
a
=
3
cosB
b

∴由正弦定理知:
a
sinA
=
b
sinB
=
b
3
cosB

∴sinB=
3
cosB,即有 tanB=
3

∵0<B<π
∴B=
π
3

(Ⅱ)∵由(Ⅰ)知,sinB=
3
2
,a=
4
3
3
sinA,A=
3
-C

∴S△ABC=
1
2
absinC=
1
2
×
4
3
3
sin(
3
-C
)×2×sinC=
4
3
3
sin(
3
-C
)×sinC=sin2C+
3
3
cos2C+
3
3
=
2
3
3
sin(2C+
π
6
)+
3
3
3

∴△ABC面积的最大值为
3
点评:本题主要考查了正弦定理的应用,三角形面积公式的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包括边界)内,则圆的半径能取到的最大值为(  )
A、
3
2
B、4-
6
C、4+
6
D、
6
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和Sn=
3n2-n
2
,n∈N+
(1)求数列{an}的通项公式;
(2)若数列bn满足:bn=
1
3
(an+2)•2n,n∈N+,试求{bn}的前n项和公式Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c,d∈R,a>b,c>d,则下列不等式成立的是(  )
A、ac>bd
B、a2>b2
C、c2≥d2
D、a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD长为(  )
A、5
B、
41
C、4
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(1)能否以
b
c
作基底,表示a?若能,请写出表达式;
(2)若(
a
+k
c
)∥(2
b
-
a
),求实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(
1
2
)=1,如果对于0<x<y,都有f(x)>f(y)
(1)求f(1),f(4);
(2)解不等式f(-x)+f(3-x)≥-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)函数f(x)满足:①当时x>1,f(x)<-2; ②对任意x,y∈(0,+∞),总有f(xy)=f(x)+f(y)+2.
(Ⅰ)求出f(1)的值;
(Ⅱ)解不等式f(x)+f(x-1)>-4;
(Ⅲ)写出一个满足上述条件的具体函数(不必说明理由,只需写出一个就可以).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈(0,+∞),x+y-3=0,若
1
x
+
m
y
(m>0)的最小值为3,则m的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

同步练习册答案