(09年湖北鄂州5月模拟理)已知两定点A(-3,0),B(3,0),动圆M与直线AB相切于点N,且,现分别过点A、B作动圆M的切线(异于直线AB),两切线相交于点P.
⑴求动点P的轨迹方程;
⑵若直线xmy3=0截动点P的轨迹所得的弦长为5,求m的值;
⑶设过轨迹上的点P的直线与两直线分别交于点P1、P2,且点P分有向线段所成的比为λ(λ>0),当λ∈时,求的最值.解析:⑴由题设及平面几何知识得
∴动点P的轨迹是以A、B为焦点的双曲线右支由,
∴b2=c2-a2=5,故所求P点的轨迹方程为 3分
⑵易知直线xmy3=0恒过双曲线焦点B(3,0)
设该直线与双曲线右支相交于D(xD,yD),E(xE,yE)由双曲线第二定义知
,又a=2,c=3,
∴e=则 5分
由|DE|=5,得,从而易知仅当m=0时,满足|DE|=5
故所求m=0 7分
⑶设P(x,y),P1(x1、y1),P2(x2、y2)且P分有向线段所成的比为λ,则
,又点P(x,y)在双曲线
上,∴,化简得,
又,,∴ 9分
令 ∵在上单减,在上单增,
又 ∴在上单减,在上单增,∴umin=u(1)=4,
又, ∴umin=
故的最小值为9,最大值为。科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟理)(12分)如图,已知四棱锥P―ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60o,E、F 分别是BC、PC的中点.
⑴证明:AE⊥PD;
⑵若H为PD上的动点,EH与平面PAD所成最大角的正
切值为,求二面角E―AF―C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟理)(14分)设函数.
⑴求f (x)的单调区间和极值;
⑵是否存在实数a,使得关于x的不等式f (x)≥a的解集为(0,+∞)?若存在,求a的取值范围;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北鄂州5月模拟文)(13分)设f (x)=,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,
xn+1=f (xn)(n∈N*).
⑴求数列{xn}的通项公式;
⑵已知数列{an}满足,,求证:对一切n≥2的正整数都满足.查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com