精英家教网 > 高中数学 > 题目详情

一个三条侧棱两两互相垂直并且侧棱长都为1的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为                                                         ( 。  )

A.             B.              C.              D.

 

【答案】

B

【解析】

试题分析:由题意可知,该球是棱长为1的正方体的外接球,所以球的直径为正方体的体对角线,应为正方体的体对角线为,所以球的直径为,所以球的表面积为

考点:本小题主要考查球与内接正方体之间的数量关系.

点评:球的内接正方体的体对角线是球的直径,这个数量关系经常用到,要灵活应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为1,
6
,3,已知该三棱锥的四个顶点都在同一个球面上,则这个球的表面积为
16π
16π

查看答案和解析>>

科目:高中数学 来源:江苏省赣榆高级中学2007-2008学年度高三第三次阶段考试数学试题(理) 题型:022

现有一块正三棱锥形石料,其三条侧棱两两互相垂直,且侧棱长为1 m,若要将这块石料打磨成一个石球,则所得石球的最大半径为________

查看答案和解析>>

科目:高中数学 来源:2012-2013学年东北三省四市教研协作体高三等值诊断联合(长春三模)文数学(解析版) 题型:选择题

一个三条侧棱两两互相垂直并且侧棱长都为的三棱锥的四个顶点全部在同一个球面上,则该球的表面积为(      )

A.                            B.                         C.                      D.

 

查看答案和解析>>

科目:高中数学 来源:福建省厦门六中09-10学年高二下学期期中考试(理) 题型:解答题

 

如图,在直角三角形ABC中,AD是斜边BC上的高,有很多大家熟悉的性质,例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“=+”等,由此联想,在三棱锥O-ABC中,若三条侧棱OA,OB,OC两两互相垂直,可以推出那些结论?至少写出两个结论。(本题出一个正确的结论并给出必要的推理证明给7分,满分不超过14分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案