精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?
分析:要求f(x)的最大值,先求出函数的导函数,令其等于0求出极值点,在[-3,3]上求得函数的极值、端点处函数值,然后比较取最大值即可.
解答:解:f′(x)=3x2+6x,
令f′(x)=0,得3x(x+2)=0⇒x=0,x=-2.
当0≤x≤3,或-3≤x≤-2时,f′(x)≥0,f(x)单调递增;
当-2<x<0时,f'(x)<0,f(x)单调递减,
则最小值为f(-3)或f(0),
而f(-3)=(-3)3+3×(-3)2+a=a,f(0)=a,
又最小值为3,∴a=3,
∴f(x)=x3+3x2+3,其最大值为f(-2)或f(3),
∵f(-2)=(-2)3+3×(-2)2+3=7,f(3)=33+3×32+3=57,
故f(x)在[-3,3]上的最大值为57.
点评:本题考查利用导数求闭区间上函数的最值,考查学生分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

同步练习册答案