精英家教网 > 高中数学 > 题目详情
(2009•青岛一模)设x1<x2,定义区间[x1,x2]的长度为x2-x1,已知函数y=2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为
1
1
分析:根据题意可知当x≥0时,函数的定义域为[0,1];当x≤0时,函数的定义域为[-1,0].所以函数的定义域为[-1,1]此时长度为最大等于1-(-1)=2,而[0,1]或[-1,0]都可为区间的最小长度等于1,所以最大值与最小值的差为1.
解答:解:当x≥0时,y=2x,因为函数值域为[1,2]即1=20≤2x≤2=21,根据指数函数的增减性得到0≤x≤1;
当x≤0时,y=2-x,因为函数值域为[1,2]即1=20≤2-x≤2=21,根据指数函数的增减性得到0≤-x≤1即-1≤x≤0.
故[a,b]的长度的最大值为1-(-1)=2,最小值为1-0=1或0-(-1)=1,则区间[a,b]的长度的最大值与最小值的差为1
故答案为1
点评:考查学生理解掌握指数函数定义域和值域的能力,运用指数函数图象增减性解决数学问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•青岛一模)已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)已知(x2+
1
x
n的二项展开式的各项系数和为32,则二项展开式中x的系数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)复数
i
1+2i
(i是虚数单位)的实部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)已知集合A={x|x2-x-12≤0,x∈Z},从集合A中任选三个不同的元素a,b,c组成集合M,则能够满足a+b+c=0的集合M的概率为=
3
28
3
28

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为矩形,AB=PA=
1a
BC(a>0)

(Ⅰ)当a=1时,求证:BD⊥PC;
(Ⅱ)若BC边上有且只有一个点Q,使得PQ⊥QD,求此时二面角A-PD-Q的余弦值.

查看答案和解析>>

同步练习册答案