精英家教网 > 高中数学 > 题目详情
函数)的图象为(    )
C
去掉绝对值符号,将f(x)化简,即可判断选项.
解:∵f(x)=cosx?|tanx|,
∴当x∈(0,),f(x)=cosxtanx=sinx.
当x∈(,π],f(x)=-cosxtanx=-sinx.
∴f(x)=,对照选项,C正确,
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

.已知函数=Atan(x+)(
y=的部分图像如下图,则
A.2+B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数的定义域为,值域为.试求函数)的最小正周期和最值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,周期为1的奇函数是(   )
A         B
C            D

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(A>0,0<<π)在时取最大值4 (10分)
(1)求的最小正周期
(2)求的解析式
(3)把的图像按向量平移后得函数的图像,求函数的解析式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等于  
A   B    C    D  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(10分) 已知函数
(1)求的最大值和最小值;
(2)求的单调递增区间
(3)对于角,若有,且,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知___________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知向量
函数.
(Ⅰ)求函数的解析式,并写出函数的周期与对称中心坐标;
(Ⅱ)求函数的单调递增区间.

查看答案和解析>>

同步练习册答案