精英家教网 > 高中数学 > 题目详情
设不等式2(log
1
2
x)2+9(log
1
2
x)+9≤0的解集为M,求当x∈M时,函数f(x)=(log2
x
2
)•(log2
x
8
)的最大值和最小值.
∵2(log
1
2
x)2+9(log
1
2
x)+9≤0,
∴(2log
1
2
x+3)(log
1
2
x+3)≤0.
∴-3≤log
1
2
x≤-
3
2

即log
1
2
1
2
-3≤log
1
2
x≤log
1
2
1
2
)-
3
2

∴(
1
2
)-
3
2
≤x≤(
1
2
-3,即2
2
≤x≤8.
从而M=[2
2
,8].
又f(x)=(log2x-1)(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1.
∵2
2
≤x≤8,
3
2
≤log2x≤3.
∴当log2x=2,即x=4时ymin=-1;
当log2x=3,即x=8时,ymax=0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设不等式2(log
1
2
x)2+9(log
1
2
x)+9≤0的解集为M,求当x∈M时,函数f(x)=(log2
x
2
)•(log2
x
8
)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

例2:(1)设不等式2(log
1
2
x
2+9log
1
2
x
+9≤0时,求f(x)=log2(
x
2
)•(log2
x
8
)
的最大值和最小值.
(2)设f(x)=|lgx|,a、b是满足f(a)=f(b)=2f(
a+b
2
)
的实数,其中0<a<b
①求证:a<1<b;②求证:2<4b-b2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=log
1
2
x+1
x-1

(1)判断函数f(x)的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)若x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=log
1
2
x+1
x-1

(1)判断函数f(x)的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)若x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案