精英家教网 > 高中数学 > 题目详情
甲、乙两个人独立地破译密码的概率分别为,求

(1)两个人都译出密码的概率;

(2)两个人都译不出密码的概率;

(3)恰有一人译出密码的概率.

思路分析:我们把“甲独立地译出密码”记为事件A,把“乙独立地译出密码”记为事件B,显然A与B相互独立,同时与B,A与,亦相互独立.

解:A=“甲独立地译出密码”,B=“乙独立地译出密码”,且P(A)=,P(B)=.

(1)两个人都译出密码的概率为P(AB)=P(A)P(B)=×=.

(2)两个人都译不出密码的概率为P()=P()P()=[1-P(A)][1-P(B)]=(1-)(1-)=.

(3)恰好1个译出密码可分为两类,即AB且两类事件为互斥事件:

P(A+B)=P(B)+P(A)=P()P(B)+P(A)P()=(1-+(1-)=.

练习册系列答案
相关习题

科目:高中数学 来源:导学大课堂选修数学2-3苏教版 苏教版 题型:044

甲、乙两个人独立地破译密码的概率分别为,求:

(1)两个人都译出密码的概率;

(2)两个人都译不出密码的概率;

(3)恰有一人译出密码的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为,求:

(1)两个人都译出密码的概率;

(2)两个人都译不出密码的概率;

(3)恰有一个人译出密码的概率;

(4)至多一个人译出密码的概率;

(5)至少一个人译出密码的概率.

查看答案和解析>>

科目:高中数学 来源:2015届河南郑州盛同学校高一下学期第一次月考数学试卷(解析版) 题型:解答题

甲、乙两人独立地破译1个密码, 他们能译出密码的概率分别为, 求:

(1)甲、乙两人至少有一个人破译出密码的概率;   

(2)两人都没有破译出密码的概率.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人独立地破译密码的概率分别为,求:

(1)两个人都译出密码的概率;

(2)两个人都译不出密码的概率;

(3)恰有一人译出密码的概率;

(4)至多一人译出密码的概率;

(5)至少一人译出密码的概率.

查看答案和解析>>

同步练习册答案