精英家教网 > 高中数学 > 题目详情
下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π,
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的说法是
 
分析:根据含量词的命题的否定形式判断出①对,根据二倍角正弦公式先化简函数,再利用三角函数的周期公式求出函数的周期判断出②错;写出否命题,利用特例即可判断③错;根据函数的奇偶性求出f(x)在x<0时的解析式,判断出④对.
解答:解:对于①,根据含量词的命题的否定是量词互换,结论否定,故①对
对于②,y=sin(2x+
π
3
)sin(
π
6
-2x)=
1
2
sin(4x+
3
)
,所以周期T=
4
=
π
2
,故②错
对于③,“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题为“函数f(x)在x=x0处没有极值,则f′(x0)≠0”,例如y=x3,x=0时,不是极值点,但是f′(0)=0,所以③错
对于④,设x<0,则-x>0,∴f(-x)=2-x,∵f(x)为奇函数,∴f(x)=-2-x,故④对
故答案为①④
点评:求含量词的命题的否定,应该将量词”任意“与”存在“互换,同时结论否定;函数的极值点要满足导数为0且左右两边的导数符号相反.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”
②函数y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④f(x)是(-∞,0)∪(0+∞)上的奇函数x>0的解析式是f(x)=2x,则x<0的解析式为f(x)=-2-x
其中正确的说法个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②命题“函数y=sin(?x+
π
3
)
的最小正周期是π,则?=2”是真命题;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是假命题;
④f(x)是(-∞,0)∪(0,+∞)上的偶函数,x>0时f(x)的解析式是f(x)=x3
则x<0时f(x)的解析式是f(x)=-x3
其中正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②函数y=sin(2x+
π3
)
的最小正周期是π;
③“在△ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
④“m=-1”是“直线mx+(2m-1)y+1=0和直线3x+my+2=0垂直”的充要条件;
其中正确的说法是
①②③
①②③
(只填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②设随机变量ξ~N(0,σ2),且P(ξ<-1)=
1
4
,则P(0<ξ<1)=
1
4

③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④函数f(x)为R上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=-2-x
其中正确的是
①②④
①②④

查看答案和解析>>

同步练习册答案