精英家教网 > 高中数学 > 题目详情
已知锐角三角形ABC中内角A、B、C的对边分别为a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx-
π
6
)-cosω
x
 
 
(ω>0)
,且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.
分析:(1)利用正弦定理与余弦定理可求得cosC的值,即可求得C的值;
(2)化简函数,利用周期确定ω,进而可得函数的解析式,即可求f(A)的取值范围.
解答:解:(1)∵sin2C=2sinAsinB,∴由正弦定理有:c2=2ab,
由余弦定理有:a2+b2=c2+2abcosC=c2(1+cosC)①
又a2+b2=6abcosC=3c2cosC②
由①②得1+cosC=3cosC,∴cosC=
1
2

又0<C<π,∴C=
π
3

(2)f(x)=sin(ωx-
π
6
)-cosω
x
 
 
=
3
sin(ωx-
π
3

∵f(x)图象上相邻两最高点间的距离为π,
∴T=π
ω

∴ω=2
∴f(x)=
3
sin(2x-
π
3

∴f(A)=
3
sin(2A-
π
3

π
6
<A<
π
2
,∴0<2A-
π
3
3

∴0<sin(2A-
π
3
)≤1
∴0<f(A)≤
3
点评:本题考查正弦定理与余弦定理,考查三角函数的图象与性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(Ⅰ)求证:tanA=2tanB;
(Ⅱ)设AB=3,求AB边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形△ABC内角A、B、C对应边分别为a,b,c.tanA=
3
bc
b2+c2-a2

(Ⅰ)求A的大小;
(Ⅱ)求cosB+cosC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角三角形ABC中,定义向量
m
=(sinB,-
3
),
n
=(cos2B,4cos2
B
2
-2),且
m
n

(1)求函数f(x)=sin2xcosB-cos2xsinB的单调减区间;
(2)若b=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•卢湾区二模)(文)已知锐角三角形ABC的三边为连续整数,且角A、B满足A=2B.
(1)当
π
5
<B<
π
4
时,求△ABC的三边长及角B(用反三角函数值表示);
(2)求△ABC的面积S.

查看答案和解析>>

同步练习册答案