由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为 .
科目:高中数学 来源: 题型:
某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由长方形休闲区A1B1C1D1和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米(如图所示).
(1)若设休闲区的长和宽的比
=x,求公园ABCD所占面积S关于x的函数解析式.
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽应如何设计?
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C的中心在坐标原点,焦点在x轴上且过点P(
,
),离心率是
.
(1)求椭圆C的标准方程;
(2)直线l过点E(-1,0)且与椭圆C交于A,B两点,若|EA|=2|EB|,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
某家电产品受在保修期内维修费等因素的影响,企业生产每件的利润与该产品首次出现故障的时间有关.某厂家生产甲、乙两种品牌,保修期均为2年.现从该厂已售出的两种品牌家电中各随机抽取50件,统计数据如下:
| 品牌 | 甲 | 乙 | |||
| 首次出现故障时间x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
| 数量(件) | 2 | 3 | 45 | 5 | 45 |
| 每件利润(百元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(I)从该厂生产的甲、乙品牌产品中随机各抽取一件,求其至少有一件首次出现故障发生在保修期内的概率;
(II)若该厂生产的家电均能售出,记生产一件甲品牌的利润为X1,生产一件乙品牌家电的利润为X2,分别求X1,X2的分布列;
(III)该厂预计今后这两种品牌家电销量相当,由于资金限制,只能生产其中一种品牌的家电.若从经济效益的角度考虑,你认为应生产哪种品牌的家电?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com