(本小题满分13分)
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
(Ⅰ)证明:∵CD⊥AD,CD⊥PA
∴CD⊥平面PAD ∴CD⊥AG,
又PD⊥AG
∴AG⊥平面PCD …………4分
(Ⅱ)证明:作E
F⊥PC于F,因面PEC⊥面PCD
![]()
∴EF⊥平面PCD,又由(Ⅰ)知AG⊥平面PCD
∴EF∥AG,又AG
面PEC,EF
面PEC,
∴AG∥平面PEC ………………7分
(Ⅲ)由AG∥平面PEC知A、G两点到平面PEC的距离相等
由(Ⅱ)知A、E
、F、G四点共面,
又AE∥CD ∴ AE∥平面PCD
∴ AE∥GF,∴ 四边形AEFG为平行四边形,∴ AE=GF ……………8分
PA=AB=4, G为PD中点,FG
CD
∴ FG=2 ∴ AE=FG=2 ………………………9分
∴
……………
…………10分
又EF⊥PC,EF=AG![]()
∴
………………………11分
又
,∴
,即
,∴![]()
∴ G点到平面PEC的距离为
. ………………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com