精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(Ⅱ)当x>0时,数学公式恒成立,求整数k的最大值;
(Ⅲ)试证明:(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))>e2n-3

(Ⅰ)解:由题,…(2分)
故f(x)在区间(0,+∞)上是减函数;…(3分)
(Ⅱ)解:当x>0时,恒成立,即在(0,+∞)上恒成立,
,则,…(5分)
再取g(x)=x-1-ln(x+1),则
故g(x)在(0,+∞)上单调递增,
而g(1)=-ln2<0,g(2)=1-ln3<0,g(3)=2-2ln2>0,…(7分)
故g(x)=0在(0,+∞)上存在唯一实数根a∈(2,3),a-1-ln(a+1)=0,
故x∈(0,a)时,g(x)<0;x∈(a,+∞)时,g(x)>0,
,故kmax=3…(8分)
(Ⅲ)证明:由(Ⅱ)知:,∴
,…(10分)
又ln[(1+1•2)•(1+2•3)•(1+3•4)•…•(1+n(n+1))]=ln(1+1×2)+ln(1+2×3)+…+ln(1+n×(n+1))=
即:(1+1•2)•(1+2•3)•(1+3•4)•…•[1+n(n+1)]>e2n-3…(14分)
分析:(Ⅰ)求导函数,确定导数的符号,即可得到结论;
(Ⅱ)当x>0时,恒成立,即在(0,+∞)上恒成立,构造函数,求出函数的最小值,即可求整数k的最大值;
(Ⅲ)由(Ⅱ)知:,从而令,即可证得结论.
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=(
1
3
)x
,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域;
(3)若方程f(x)-m=0有四个解,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(2x-
π
4
)
,给出下列结论:
①函数f(x)的最小正周期为π
②函数f(x)的一个对称中心为(-
8
,0)

③函数f(x)的一条对称轴为x=
8

④函数f(x)的图象向右平移
π
8
个单位后所得函数为偶函数⑤函数f(x)在区间(-
π
8
,0)
上是减函数
其中,所有正确结论的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-π),g(x)=cos(x+π),则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+
3
sin2x
(1)求函数f(x)的单调增区间;
(2)当 x∈[0,
π
4
]时,求函数f(x)的值域;
(3)若将该函数图象向左平移
π
4
个单位长度,得到函数y=g(x)的图象,求函数y=g(x)的对称中心.

查看答案和解析>>

同步练习册答案