| A. | 1:3 | B. | 2:3 | C. | 1:5 | D. | 2:5 |
分析 根据已知中,P为△ABC所在平面内一点,我们易得到$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AD}$+$\frac{1}{5}$$\overrightarrow{AC}$,将AB延长至D,使长度AD=2AB,根据向量加法的平行四边形法则,我们易判断出P点在P点到AB边的距离为C点到AB边距离的$\frac{1}{5}$,进而得到△PAB的面积与△ABC的面积之比
解答 解:∵$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,
∴$\overrightarrow{AP}$=$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{1}{5}$$\overrightarrow{AC}$,
将AB延长至D,使长度AD=2AB
向量$\overrightarrow{AD}$=2$\overrightarrow{AB}$.
则$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AD}$+$\frac{1}{5}$$\overrightarrow{AC}$,
则S△ABC=$\frac{1}{2}$S△ADC,S△ABP=$\frac{1}{10}$S△ADC,
△PAB的面积与△ABC的面积之比是1:5
故选:C
点评 本题考查的知识点是向量的共线定理,其中将AB延长至D,使长度AD=2AB,然后根据平行四边形法则临到P点在P点到AB边的距离为C点到AB边距离的$\frac{1}{5}$,是解答本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{22}{7}$ | B. | $\frac{47}{15}$ | C. | $\frac{51}{16}$ | D. | $\frac{53}{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3] | B. | (-2,3] | C. | (-∞,-2) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$+$\frac{3}{5}$i | B. | $\frac{3}{5}$+$\frac{1}{5}$i | C. | $\frac{1}{5}$-$\frac{3}{5}$i | D. | $\frac{3}{5}$-$\frac{1}{5}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com