精英家教网 > 高中数学 > 题目详情
11.下列各组函数表示同一个函数的是(  )
A.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1B.f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$
C.$f(x)={({\sqrt{x-1}})^2}$,g(x)=|x-1|D.f(x)=2x-1,g(t)=2t-1

分析 根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.

解答 解:对于A,f(x)=$\frac{{x}^{2}-1}{x-1}$=x+1(x≠1),与g(x)=x+1(x∈R)的定义域不同,
∴不是同一函数;
对于B,f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$=$\sqrt{{x}^{2}-1}$(x≥1),与g(x)=$\sqrt{{x}^{2}-1}$(x≥1或x≤-1)的定义域不同,
∴不是同一函数;
对于C,f(x)=${(\sqrt{x-1})}^{2}$=x-1(x≥1),与g(x)=|x-1|(x∈R)的定义域不同,对应关系也不同,
∴不是同一函数;
对于D,f(x)=2x-1(x∈R),与g(t)=2t-1(t∈R)的定义域相同,对应关系也相同,
∴是同一函数.
故选:D.

点评 本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)是定义在R上偶函数,当x≥0时,f(x)单调递减.则下列各式成立的是(  )
A.f(1)<f(-3)B.f(3)>f(2)C.f(-2)>f(3)D.f(2)>f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=loga(x-1),g(x)=loga(3-x)(a>0且a≠1).
(1)求函数G(x)=f(x)-g(x)的定义域;
(2)探讨H(x)=f(x-1)+g(x+1)的奇偶性;
(3)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若集合A={x|ax2+2x-1=0}只有一个元素,则实数a的值为0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(1)+f(2)+…+f(2015)的值为(  )
A.-1B.$\frac{7\sqrt{2}}{2}$C.671D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明至少存在一点ξ∈(a,b),使f(ξ)=ξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.经过点M(4,-1),且与直线y=2垂直的直线方程是x=4.

查看答案和解析>>

同步练习册答案