精英家教网 > 高中数学 > 题目详情
如图在直角梯形OABC中AB∥OC,AB=1,OC=BC=2,直线l:x=t,t∈[0,2]截得此梯形所得位于l左方的图形面积为S,那么函数S=f(t)的图象大致可为下列图中的(  )
分析:依题意,可求得tan∠AOC=2,继而可求S=f(t)的函数表达式,利用分段函数的图象可得答案.
解答:解:依题意,作图如下,过A作AD⊥x轴于D,

则tan∠AOC=
|AD|
|CD|
=2,
∴当0<t≤1时,S=f(t)=
1
2
×t×(2t)=t2
当1<t≤2时,S=f(t)=
1
2
×1×2+(t-1)×2=2t-1;
∴S=f(t)=
t2,0<t≤1
2t-1,1<t≤2

故函数S=f(t)的图象为部分二次函数图象与部分一次函数图象,
故选:C.
点评:本题考查函数的图象,求得S=f(t)的函数表达式是关键,考查推理分析与运算、识图能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,点M是棱SB的中点,N是OC上的点,且ON:NC=1:3.
(1)求异面直线MN与BC所成的角;
(2)求MN与面SAB所成的角.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省南京十三中高考数学模拟试卷(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2008年江苏省苏州五中高三调研数学试卷(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学附加题部分专项训练1(理科)(解析版) 题型:解答题

如图所示在直角梯形OABC中,∠COA=∠OAB=,OA=OS=AB=1,OC=4,
点M是棱SB的中点,N是OC上的点,且ON:NC=1:3,以OC,OA,OS所在直线
建立空间直角坐标系O-xyz.
(1)求异面直线MN与BC所成角的余弦值;
(II)求MN与面SAB所成的角的正弦值.

查看答案和解析>>

同步练习册答案