精英家教网 > 高中数学 > 题目详情
椭圆+=1的离心率为(  )
A.B.C.D.
D
由椭圆方程+=1可知a2=16,b2=8,
∴c2=a2-b2=8,
∴e=====.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:+=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,有椭圆=1(a>b>0)的焦距为2c,以O为圆心,a为半径的圆.过点作圆的两切线互相垂直,则离心率e=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆+y2=1的左焦点为F,P为椭圆上一点,其横坐标为,则|PF|等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0)的一个顶点为A(2,0),离心率为.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;
(2)当△AMN的面积为时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A、B两点,且=3,则C的方程为(  )
(A) +y2=1      (B) +=1
(C) +=1     (D) +=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆右焦点且斜率为1的直线被椭圆截得的弦MN的长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是(  )
A.(0,+∞)B.(,+∞)
C.(,+∞)D.(,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆=1上一点M作圆x2+y2=2的两条切线,点A,B为切点.过A,B的直线l与x轴、y轴分别交于P,Q两点,则△POQ的面积的最小值为(  )
A.B.C.1D.

查看答案和解析>>

同步练习册答案