分析 利用已知可求$\frac{2π}{3}$<$\frac{π}{6}$+$\frac{α}{2}$<$\frac{11π}{12}$,sin($\frac{π}{6}$+$\frac{α}{2}$)>0,根据二倍角公式即可得解.
解答 解:∵π<α<$\frac{3π}{2}$,
∴$\frac{π}{2}$<$\frac{α}{2}$<$\frac{3π}{4}$,$\frac{2π}{3}$<$\frac{π}{6}$+$\frac{α}{2}$<$\frac{11π}{12}$,sin($\frac{π}{6}$+$\frac{α}{2}$)>0,
∵cos($\frac{π}{3}$+α)=1-2sin2($\frac{π}{6}$+$\frac{α}{2}$)=-$\frac{5}{13}$,
∴解得:sin($\frac{π}{6}$+$\frac{α}{2}$)=$\frac{{3\sqrt{13}}}{13}$.
故答案为:$\frac{{3\sqrt{13}}}{13}$.
点评 本题主要考查了二倍角公式在三角函数求值中的应用,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{4})$ | B. | $(\frac{1}{4},\frac{1}{2})$ | C. | $(\frac{1}{2},\frac{3}{4})$ | D. | $(\frac{3}{4},1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-1,1] | C. | [-$\frac{1}{2}$,1] | D. | [-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com