精英家教网 > 高中数学 > 题目详情
15.如图所示,在四棱锥A-BCDE中,AB⊥平面BCDE,四边形BCDE为矩形,F、G分别为AC、AE的中点,AB=BC=2,BE=$\sqrt{2}$.
(Ⅰ)证明:EF⊥BD;
(Ⅱ)求点A到平面BFG的距离.

分析 (Ⅰ)取BC的中点M,连接MF,ME,证明BD⊥平面MEF,即可证明EF⊥BD;
(Ⅱ)利用VA-BFG=VG-ABF,求点A到平面BFG的距离.

解答 (Ⅰ)证明:取BC的中点M,连接MF,ME,
∵AB⊥平面BCDE,MF∥AB,
∴MF⊥平面BCDE,又BD?平面BCDE,∴MF⊥BD.
在Rt△MBE与Rt△BED中,∵$\frac{MB}{BE}$=$\frac{BE}{ED}$=$\frac{\sqrt{2}}{2}$,∴Rt△MBE∽Rt△BED.
∴∠BME=∠EBD,而∠BME+∠BEM=90°,于是∠BEM+∠EBD=90°,
∴ME⊥BD,
又∵MF∩ME=M,∴BD⊥平面MEF,
又∵EF?平面MEF,∴EF⊥BD.…(6分)
(Ⅱ)解:∵AB⊥平面BCDE,BE?平面BCDE,∴AB⊥BE,
∵四边形BCDE为矩形,∴BE⊥BC,
又∵AB∩BC=B,
∴BE⊥平面ABC,
∵G为AE的中点,
∴G到平面ABF的距离为$\frac{1}{2}$BE=$\frac{\sqrt{2}}{2}$,
S△ABF=$\frac{1}{2}$×2×1=1,
在△BFG中,FG=$\frac{1}{2}$CE=$\frac{\sqrt{6}}{2}$,BG=$\frac{1}{2}$AE=$\frac{\sqrt{6}}{2}$,BF=$\frac{1}{2}$AC=$\sqrt{2}$,
∴S△BFG=$\frac{\sqrt{2}}{2}$,
设A到平面BFG的距离为d,
∵VA-BFG=VG-ABF
∴$\frac{1}{3}$•S△BFG•d=$\frac{1}{3}$•S△ABF•$\frac{\sqrt{2}}{2}$,
∴d=1,即A到平面BFG的距离为1.…(12分)

点评 本题考查线面垂直的判定与性质,考查等体积方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.某几何体的三视图如图所示,则该几何体的体积是$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数,是偶函数,且周期为π的是(  )
A.y=cos2x-sin2xB.y=sin2x+cos2xC.y=cos2x-sin2xD.y=sin2x+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a=-1”是“直线ax+3y+2=0与直线x+(a-2)y+1=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.侧棱与底面垂直的三棱柱A1B1C1-ABC的所有棱长均为2,则三棱锥B-AB1C1的体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a>0,且a≠1,则“函数y=ax在R上是减函数”是“函数y=(2-a)x3在R上是增函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为正方形,四边形ABEF为直角梯形,且AF∥BE,AB⊥BE,平面ABCD∩平面ABEF=AB,AB=BE=2AF=2.
(Ⅰ)求证:AC∥平面DEF;
(Ⅱ)若二面角D-AB-E为直二面角,
( i)求直线AC与平面CDE所成角的大小;
( ii)棱DE上是否存在点P,使得BP⊥平面DEF?若存在,求出$\frac{DP}{DE}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设D为△ABC所在平面内一点,且$\overrightarrow{BC}=3\overrightarrow{BD}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$B.$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$C.$\frac{4}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}$D.$\frac{2}{3}\overrightarrow{AB}+\frac{5}{3}\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设 a∈R,若i(1+ai)=2+i,则a=-2.

查看答案和解析>>

同步练习册答案