精英家教网 > 高中数学 > 题目详情
20.已知$\overrightarrow{a}$=(2,-1,2),$\overrightarrow{b}$=(-1,3,-3),$\overrightarrow{c}$=(13,λ,3),若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,则λ的值为6.

分析 向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,存在实数m,n使得$\overrightarrow{c}$=$m\overrightarrow{a}+n\overrightarrow{b}$,即可得出.

解答 解:∵向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$共面,
∴存在实数m,n使得$\overrightarrow{c}$=$m\overrightarrow{a}+n\overrightarrow{b}$,
∴$\left\{\begin{array}{l}{13=2m-n}\\{λ=-m+3n}\\{3=2m-3n}\end{array}\right.$,解得λ=6.
故答案为:6.

点评 本题考查了向量坐标运算性质、向量共面定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.向边长分别为5,5,6的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为1-$\frac{π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-2x,g(x)=$\frac{1}{2}a{x^2}$.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),若函数h(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(x2+tx+2)(t为常数,且-2$\sqrt{2}$<t<2$\sqrt{2}$).
(1)当x∈[0,2]时,求函数f(x)的最小值(用t表示);
(2)是否存在不同的实数a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆x2+y2=8内有一点P0(-1,2),AB为过点P0且倾斜角为α的弦.
(1)当α=$\frac{3π}{4}$时,求AB的长;
(2)当弦AB被点P0平分时,写出直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a,b,c分别是内角A,B,C所对的边,已知a=4,B=60°,C=75°,则b=(  )
A.2$\sqrt{5}$B.2$\sqrt{6}$C.2$\sqrt{3}$D.$\frac{11}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和Sn满足S2=-1,S5=5,则数列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016项的和为(  )
A.$\frac{2016}{4033}$B.-$\frac{4032}{4031}$C.$\frac{2016}{4031}$D.-$\frac{2016}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知α为△ABC的内角,且tanα=-$\frac{3}{4}$,计算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)sin($\frac{π}{2}$+α)-cos($\frac{π}{2}$-α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线$\frac{1}{4}$y=x2的焦点坐标为(  )
A.(1,0)B.(2,0)C.(0,$\frac{1}{8}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

同步练习册答案