精英家教网 > 高中数学 > 题目详情
直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则a-b=
-4
-4
分析:由直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),把点的坐标代入直线方程求k,求出函数在x=1时的导数值,也就是k值,替换后可求a,再把点的坐标代入曲线方程求b,问题得到解决.
解答:解:由y=x3+ax+b,得y=(x3+ax+b)=3x2+a,
所以曲线y=x3+ax+b在点A(1,3)处的切线的斜率k=3×12+a=3+a,
又点A(1,3)在直线y=kx+1上,所以3=k×1+1,所以,k=2,即3+a=2,a=-1.
又点A(1,3)在曲线y=x3+ax+b上,所以3=13+1×(-1)+b,所以b=3.
所以a-b=-1-3=-4.
故答案为-4.
点评:本题考查了利用导数研究曲线上某点切线方程,考查了方程思想,解答此题的关键是,明确曲线在某点处的导数值就是曲线在该点处的切线的斜率,此题是中低档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设双曲线C:数学公式的虚轴长为2数学公式,渐近线方程是y=数学公式,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且数学公式
(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2012年上海市闵行区高考数学一模试卷(文科)(解析版) 题型:解答题

设双曲线C:的虚轴长为2,渐近线方程是y=,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

同步练习册答案