精英家教网 > 高中数学 > 题目详情

若函数数学公式,则函数y=f(f(x))的定义域为________.

{x|x∈R,x≠-1且x≠-2}
分析:根据题意,由分式函数的定义域可得集合A,由解析式的求法可得函数y=f[f(x)]的解析式,进而可得函数y=f(f(x))的定义域.
解答:根据题意,已知函数,的定义域为A,则A={x|x≠-1},
y=f[f(x)]=f()=
令x+2≠0且x≠-1,则函数y=f(f(x))的定义域为B={x|x∈R,x≠-1且x≠-2};
故答案为:{x|x∈R,x≠-1且x≠-2}.
点评:本题重点考查函数定义域的求法,注意复合函数的定义域的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、若函数y=f(x)存在反函数y=f-1(x),且函数y=2x-f(x)的图象过点(2,1),则函数y=f-1(x)-2x的图象一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
④若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=0对称.
其中所有正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),且函数y=2x-f(x)的图象过点(2,1),则函数y=f-1(x)-2x的图象一定过点
(3,-4)
(3,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下三个命题:
①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0;
②若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0;
③若函数y=f(x-1)是偶函数,则函数y=f(x)的图象关于直线x=-1对称.
其中正确的命题序号是
 

查看答案和解析>>

同步练习册答案