精英家教网 > 高中数学 > 题目详情
已知函数f(x)的自变量取值区间为A,若其值域也为A,则称区间A为f(x)的保值区间.若g(x)=x+m-lnx的保值区间是[2,+∞),则m的值为
ln2
ln2
分析:根据g(x)的保值区间得到m的取值范围,求出函数的导函数的增减区间,2≤1-m即m≤-1时,则g(1-m)=2得m的值即可.
解答:解:∵g′(x)=1-
1
x
>0,得x>1
所以g(x)在(1,+∞)上为增函数,同理可得g(x)在(0,1)上为减函数.
又因为g(x)=x+m-lnx的保值区间是[2,+∞),则定义域为[2,+∞)
所以函数g(x)在[2,+∞)上单调递增
g(x)min=g(2)=2+m-ln2=2
所以m=ln2.
故答案为:ln2.
点评:本题主要考查学生求函数定义域、值域的能力,以及利用导数研究函数增减性的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数F(x)=x3+sinx+b,若F(2)=3,求F(-2).
解答如下:
23+sin2+b=3,①
(-2)3+sin(-2)+b=F(-2),②
①+②得F(-2)=2b-3.
请借鉴以上题的特点和解答过程,自编一道类似的题目,不用解答.
已知函数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如果对于函数f(x)定义域内任意的两个自变量的值x1,x2,当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1,y2,使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数,已知函数g(x)的定义域、值域分别为A、B,A=1,2,3,B⊆A,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+k,其中实数k随机选自区间[-2,1].对?x∈[0,1],f(x)≥0的概率是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•西城区二模)已知函数f(x)=kx+1,其中实数k随机选自区间[-2,1].对?x∈[0,1],f(x)≥0的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=kx+1,其中实数k随机选自区间[-2,1].对?x∈[0,1],f(x)≥0的概率是
2
3
2
3

查看答案和解析>>

同步练习册答案