精英家教网 > 高中数学 > 题目详情
a>b>1,P=
lga•lgb
,Q=
1
2
(lga+lgb),R=lg(
a+b
2
)
,则P,Q,R的大小关系是
 
分析:根据基本不等式的性质进行判断即可.
解答:解:∵a>b>1,∴lga>lgb>0,
∵lg(
a+b
2
>lg
ab
=
1
2
(lga+lgb)

∴R>Q,
1
2
(lga+lgb)>
lga•lgb

∴Q>P,
综上:P<Q<R.
故答案为:P<Q<R.
点评:本题主要考查基本不等式的应用,要求熟练掌握基本不等式的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),过点P(1,0)作直线分别交射线OA,OB于A,B点.
(1)当AB中点为P时,求直线AB的方程;
(2)在(1)的条件下,若A、B两点到直线l:y=mx+2的距离相等,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x=2+t
y=1-at
(t为参数),与椭圆x2+4y2=16交于A、B两点.
(1)若A,B的中点为P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

A:如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于点D,BC=4cm,
(1)试判断OD与AC的关系;
(2)求OD的长;
(3)若2sinA-1=0,求⊙O的直径.
B:(选修4-4)已知直线l经过点P(1,1),倾斜角α=
4

(1)写出直线l的参数方程;
(2)设l与圆x2+y2=4相交于两点A、B,求点P到A、B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:
x=2+t
y=1-at
(t为参数),与椭圆x2+4y2=16交于A、B两点.
(1)若A,B的中点为P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌二中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知直线(t为参数),与椭圆x2+4y2=16交于A、B两点.
(1)若A,B的中点为P(2,1),求|AB|;
(2)若P(2,1)是弦AB的一个三等分点,求直线l的直角坐标方程.

查看答案和解析>>

同步练习册答案