精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PCE;
(2)求三棱锥C﹣BEP的体积.

【答案】
(1)证明:取PC的中点G,

连接FG、EG

∴FG为△CDP的中位线

∴FG CD

∵四边形ABCD为矩形,

E为AB的中点

∴AE CD

∴FG AE

∴四边形AEGF是平行四边形

∴AF∥EG又EG平面PCE,AF平面PCE

∴AF∥平面PCE


(2)解:∵三棱锥C﹣BEP即为三棱锥P﹣BCE

∵PA⊥底面ABCD,即PA是三棱锥P﹣BCE的高

在Rt△BCE中,BE=1,BC=2,

∴三棱锥C﹣BEP的体积

VCBEP=VPBCE= =


【解析】(1)欲证AF∥平面PCE,根据直线与平面平行的判定定理可知只需证AF与平面PCE内一直线平行,取PC的中点G,连接FG、EG,AF∥EG又EG平面PCE,AF平面PCE,满足定理条件;(2)三棱锥C﹣BEP的体积可转化成三棱锥P﹣BCE的体积,而PA⊥底面ABCD,从而PA即为三棱锥P﹣BCE的高,根据三棱锥的体积公式进行求解即可.
【考点精析】本题主要考查了直线与平面平行的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,甲船从A处以每小时30海里的速度沿正北方向航行,乙船在B处沿固定方向匀速航行,B在A北偏西105°方向用与B相距10 海里处.当甲船航行20分钟到达C处时,乙船航行到甲船的北偏西120°方向的D处,此时两船相距10海里.

(1)求乙船每小时航行多少海里?
(2)在C的北偏西30°方向且与C相距 海里处有一个暗礁E,周围 海里范围内为航行危险区域.问:甲、乙两船按原航向和速度航行有无危险?若有危险,则从有危险开始,经过多少小时后能脱离危险?若无危险,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中新网2016年12月19日电根据预报,今天开始雾霾范围将进一步扩大 日夜间至日,时段部分地区浓度值会超过微克/立方米. 而此轮雾最严的时段将有包括京津冀、山西、陕西、河南等个省市在内的地区被雾笼罩. 是指大气中直径小于或等于微米的顆粒物也称为可人肺粒物. 日均值在微克/立方米以下空气质克/立方米克/立方米之间空气质为二级微克/立方米以上空气质为超标.某地区在2016年12月19日至28日每天的监测数据的茎叶图如下:

(1)求出这些数据的中位数与极差;

(2)从所给的空气质不超标的天的数据中任意抽取天的数据,求这天中恰好有空气质为一级另一天空气质量为二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:
①若 <0,则 + >2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2﹣ax+1≥0,则0<a≤4.
其中是真命题的有(
A.①②
B.②③
C.①③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域是,对于以下四个命题:

(1)是奇函数,则也是奇函数;

(2)是周期函数,则也是周期函数;

(3)是单调递减函数,则也是单调递减函数;

(4) 若函数存在反函数,且函数有零点,则函数也有零点.

其中正确的命题共有

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议()不改变车票价格,减少支出费用;建议()不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则

A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)

B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)

C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 是定义在(﹣1,1)上的奇函数,且
(1)确定函数的解析式;
(2)证明函数f(x)在(﹣1,1)上是增函数;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α< ,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.(本小题满分12分)

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形EF分别为PCBD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

)求证:EF//平面PAD

)求三棱锥C—PBD的体积.

查看答案和解析>>

同步练习册答案