精英家教网 > 高中数学 > 题目详情

已知△中,平面分别是上的动点,且

(1)求证:不论为何值,总有平面平面
(2)当为何值时,平面平面

(1)见解析;(2)见解析.

解析试题分析:(1)通过证明⊥平面,说明平面平面
(2)将平面平面作为条件,利用三角形关系求解.
试题解析:(1)∵⊥平面,∴
,∴⊥平面
又∵
∴不论为何值,恒有
⊥平面
平面
∴不论为何值,总有平面⊥平面
(2)由(1)知,,又平面⊥平面
⊥平面,∴


,由,得

故当时,平面平面
考点:两平面的位置关系的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,点是圆上异于的点,直线 分别为的中点。

(1)记平面与平面的交线为,试判断与平面的位置关系,并加以说明;
(2)设(1)中的直线与圆的另一个交点为,且点满足,记直线
平面所成的角为异面直线所成的锐角为,二面角的大小为
①求证:
②当点为弧的中点时,,求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正三棱柱ABCDEF中,AB=2,AD=1.P是CF的延长线上一点,FP=t.过A、B、P三点的平面交FD于M,交FE于N.

(1)求证:MN∥平面CDE;
(2)当平面PAB⊥平面CDE时,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体ABCD中作截面PQR,若PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.

求证:M、N、K三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBCABBCASAB.过AAFSB,垂足为F,点EG分别是棱SASC的中点.

求证:(1)平面EFG∥平面ABC;(2)BCSA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分别是BC,AA1的中点.

求(1)异面直线EF和A1B所成的角.
(2)三棱锥A-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.

(1)求证:EF∥平面CB1D1
(2)求证:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P为DN的中点.
 
(1)求证:BD⊥MC;
(2)线段AB上是否存在点E,使得AP∥平面NEC?若存在,说明在什么位置,并加以证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为直角梯形,,平面
(1)求证:平面;
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案