精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )
A.(
2
2
,1)
B.(0,
2
2
)
C.(0,1)D.(0,
1
2
)
由题意,m+2-n=m+n,∴n=1
又m+2>n,m>0,∴m+2>2
e2=
m+2-n
m+2
=1-
1
m+2

1
2
e2<1

2
2
<e<1

故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•马鞍山二模)已知椭圆C1
x2
m+2
+
y2
n
=1
与双曲线C2
x2
m
-
y2
n
=1
共焦点,则椭圆C1的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
m+2
-
y2
n
=1与双曲线C2
x2
m
+
y2
n
=1有相同的焦点,则椭圆C1的离心率e的取值范围为(  )
A、(
2
2
,1)
B、(0,
2
2
C、(0,1)
D、(0,
1
2

查看答案和解析>>

同步练习册答案