精英家教网 > 高中数学 > 题目详情
在正项等比数列{an}中,若a1•a9=16,则log2a5=(  )
A、2B、4C、8D、16
考点:等比数列的性质
专题:等差数列与等比数列
分析:依题意,利用等比数列的性质,可求得a5=4,从而可得答案.
解答: 解:在正项等比数列{an}中,∵a1•a9=a52=16,
∴a5=4,
∴log2a5=log24=2,
故选:A.
点评:本题考查等比数列的性质,考查对数的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

方程y=x2-5x+6与方程x2+(y-2)2=4,求交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=ex(x+1)在点(0,1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x>0,x+
4
x
≥4:命题q:?x0∈R+,2x0=
1
2
,则下列判断正确的是(  )
A、p是假命题
B、q是真命题
C、p∧(¬q)是真命题
D、(¬p)∧q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A为平面α内一定点,AB是平面α的定长斜线段,A为斜足,若点P在平面α内运动,使△ABP面积为定值,则动点P的轨迹是(  )
A、圆B、两条平行线
C、一条直线D、椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算?:x?y=x(l-y),若对任意x>2,不等式(x-a)?x≤a+2都成立,则实数a的取值范围是(  )
A、(-∞,-3)
B、(-∞,7]
C、(-∞,1]
D、(-∞,1]∪[7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①函数f(x)=lnx-
3
x
在区间(e,3)上有且只有一个零点;
②已知l是直线,α、β是两个不同的平面.若α⊥β,l?α,则l⊥β;
③已知m,n表示两条不同直线,α表示平面.若m⊥α,m⊥n,则n∥α;
④在△ABC中,已知a=20,b=28,A=40°,在求边c的长时有两解.
其中所有正确结论的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,且当x∈(-∞,0]时,f(x)=-xlg(2m-x+
1
2
),当x>0时,不等式f(x)<0恒成立,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:
1
2
≤x≤1,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要而不充分条件,则实数a的取值范围是(  )
A、[0,
1
2
]
B、(0,
1
2
)
C、(-∞,0]∪[
1
2
,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

同步练习册答案