精英家教网 > 高中数学 > 题目详情

设集合A={x|1-a≤x≤1+a},集合B={x|x<-1或x>5},分别就下列条件求实数a的取值范围:
(1)A∩B=∅;
(2)A∪B=B.

解:(1)∵A={x|1-a≤x≤1+a},集合B={x|x<-1或x>5},且A∩B=∅,
∴A=∅或A的解集为-1≤x≤5,即1-a>1+a或
解得:a<0或0≤a≤2,
则当A∩B=∅时,a的取值范围为a≤2;
(2))∵A∪B=B,∴A⊆B,
依题意得:1-a>5或1+a<-1,
解得:a<-4或a<-2,
则当A∪B=B时,a的取值范围为a<-2.
分析:(1)由集合A和B,且A与B的交集为空集,得到A为空集或A的解集为-1≤x≤5,列出关于a的不等式及不等式组,求出不等式及不等式组的解集,即可得到A∩B=∅时,a的取值范围;
(2)由A与B的并集为B,得到A为B的子集,根据集合A和B中不等式的解集,列出关于a的不等式,求出不等式的解集,即可得到满足题意a的范围.
点评:此题考查了交集、并集的运算,以及集合间的包含关系,弄清题意是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|1+log2|x|≤0},B={x|
1
4
≤x≤2},则A∩(CRB)=(  )
A、[-
1
2
1
4
]
B、[-
1
2
,0)∪(0,
1
4
C、(-∞,-
1
2
]∪(
1
4
,+∞)
D、[-
1
2
,0)∪(
1
4
1
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1-a≤x≤1+a},集合B={x|x<-1或x>5},分别就下列条件求实数a的取值范围:
(Ⅰ)集合A为空集;
(Ⅱ)A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x<4},B={x|x2-2x-3≤0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1≤x≤2},B={x|x≥a},若A⊆B,则a的范围是
a≤1
a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x<3},B={x|x<-1或x>2},则A∩B为(  )

查看答案和解析>>

同步练习册答案