精英家教网 > 高中数学 > 题目详情

求通过两条直线x+3y-10=0和3x-y=0的交点,且距原点为1的直线方程.

解:(解法一)由方程组解得两条直线的交点为A(1,3)
当直线的斜率存在时,设所求直线的方程为:y-3=k(x-1),即kx-y+3-k=0
由点到直线的距离公式可得=1,解得k=
即直线方程为:4x-3y+5=0,
当直线的斜率不存在时,直线的方程为x=1也符合题意,
故所求直线的方程为:4x-3y+5=0或x=1.
(解法二):由直线系的知识可设所求直线的方程为:(x+3y-10)+λ(3x-y)=0,
即(1+3λ)x+(3-λ)y-10=0,则
解得λ=±3,故所求直线的方程为:4x-3y+5=0或x=1.
分析:(解法一)由方程组解得两条直线的交点为A(1,3),然后由点斜式写方程,通过点到直线的距离求斜率,但要考虑斜率不存在时是否合适;
(解法二)由直线系的知识可设所求直线的方程为:(x+3y-10)+λ(3x-y)=0,通过点到直线的距离求λ,即可得答案.
点评:本题为直线方程的求解,设置未知量把问题转化为方程求解的问题来做是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4
k=1
xk=14
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于变量x与y,现在随机得到4个样本点A1(2,1),A2(3,2),A3(5,6),A4(4,5).小马同学通过研究后,得到如下结论:
(1)四个样本点的散点图是一个平行四边形的四个顶点;
(2)平行四边形A1A2A3A4的两条对角线A1A3、A2A4所在的直线均可以作为这组样本点的以变量x为解释变量的用最小二乘法求出的回归直线,所不同的是这两条回归直线所对应的回归方程的预报精度不同.你认为上述结论正确吗?试说明理由.(参考数据:
4








k=1
xk=14
4








k=1
xk2=54,
4








k=1
yk=14,
4








k=1
xkyk=58

查看答案和解析>>

同步练习册答案