精英家教网 > 高中数学 > 题目详情
已知sin(
π
4
+3α) sin(
π
4
-3α)=
1
4
,α∈(0,
π
4
),求(
1-cos2α
sin2α
-
3
)sin4α的值.
分析:利用
π
4
+3α,
π
4
-3α
互余,化简已知的方程,通过二倍角公式结合α的范围,求出α的值,然后代入表达式,利用特殊角的三角函数值求解即可.
解答:解:sin(
π
4
+3α)sin(
π
4
-3α)=sin(
π
4
+3α)cos(
π
4
+3α)
=
1
2
sin(6α+
π
2
)=
1
2
cos6α=
1
4

cos6α=
1
2
,又6α∈(0,
2
),∴6α=
π
3
,即α=
π
18
=10°.
∴(
1-cos2α
sin2α
-
3
)sin4α=
sinα-
3
cosα
cosα
•sin4α=
sin10o-
3
cos10o
cos10o
•sin40o
=
-2(sin60ocos10o-cos60osin10o)
cos10o
•sin40o=
-2sin50o
cos10o
•sin40o=
-sin80o
cos10o
=-1

所求值为:-1.
点评:本题主要考查三角函数的恒等变形.包含了和差角、倍角的运算,已知三角函数值求角,诱导公式,辅助角公式,要求学生对三角函数的变形方向有综合的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(x-
4
)cos(x-
π
4
)=-
1
4
,求cos4x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求复数
3
-i
的模和辐角的主值.
(2)解方程9-x-2•31-x=27.
(3)已知sinθ=-
3
5
,3π<θ<
2
,求tg
θ
2
的值.
(4)一个直角三角形的两条直角边的长分别为3cm和4cm,将这个直角三角形以斜边为轴旋转一周,求所得旋转体的体积.
(5)求
lim
n→∞
3n2+2n
n2+3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
4
+
α
2
)sin(
4
-
α
2
)=
3
10
α∈(
2
,2π)
,tan(3π-β)=
1
2

(1)求cos2α的值;
(2)求tan(α-2β)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知sin(
π
4
+3α) sin(
π
4
-3α)=
1
4
,α∈(0,
π
4
),求(
1-cos2α
sin2α
-
3
)sin4α的值.

查看答案和解析>>

同步练习册答案