精英家教网 > 高中数学 > 题目详情
已知
a
=(
x
5
y
2
6
)
b
=(
x
5
,-
y
2
6
)
,曲线
a
b
=1
上一点M到F(7,0)的距离为11,N是MF的中点,O为坐标原点,则ON的值为
 
分析:先表示出
a
b
找到对应关系,再根据双曲线的性质即到两定点的距离的差的绝对值是一定值可解.
解答:精英家教网解:由题意知
a
b
=
x2
25
-
y2
24
=1
时双曲线,
点M在其右支上,F(7,0)是右焦点,左焦点F'(-7,0)
如图,
|MF'|-|MF|=10|ON|=
1
2
|MF'|
∴|ON|=
21
2

故答案为:
21
2
点评:本题主要考查双曲线的基本定义,即到两定点的距离的差的绝对值是一个定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1x2+y2=4,圆C2x2+y2=25.点O为坐标原点,点M是圆C2上的一动点,线段OM交圆C1于N,过点M作x轴的垂线交x轴于M0,过点N作M0M的垂线交M0M于P.
(1)当动点M在圆C2上运动时,求点P的轨迹C的方程.
(2)设直线l:y=
x
5
+m
与轨迹C交于不同的两点,求实数m的取值范围.
(3)当m=
5
5
时,直线l与轨迹C相交于A,B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•西城区二模)已知实数c≥0,曲线C:y=
x
与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为(a,
a
)
,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当c=0,b≥
1
2
时,求证:
n
k=1
xk+1-xk
xk+2
42
2
(n,k∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数c≥0,曲线C:y=与直线l:y=x-c的交点为P(异于原点O),在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于点Q1,过点Q1作Q1P2平行于y轴,交曲线C于点P2(x2,y2),接着过点P2作P2Q2平行于x轴,交直线l于点Q2,过点Q2作直线Q2P3平行于y轴,交曲线C于点P3(x3,y3),如此下去,可以得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),….设点P的坐标为(a,),x1=b,0<b<a.

(Ⅰ)试用c表示a,并证明a≥1;

(Ⅱ)试证明x2>x1,且xn<a(n∈N*);

(Ⅲ)当c=0,b≥时,求证:(k,n∈N*).

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)1月月考数学试卷(理科)(解析版) 题型:解答题

已知实数c≥0,曲线与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当时,求证:

查看答案和解析>>

科目:高中数学 来源:2010年四川省广安二中高三一诊复习数学试卷(三)(解析版) 题型:解答题

已知实数c≥0,曲线与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当时,求证:

查看答案和解析>>

同步练习册答案