精英家教网 > 高中数学 > 题目详情
如图,已知⊙O的半径为2,弦AB的长为2,点C是劣弧ACB上任一点,(点C不与A、B重合),求∠ACB.

【答案】分析:首先做出辅助线,连接B、A与圆心再在优弧上找一点D,做出角ADB,根据直角三角形中三角函数的定义和特殊角的三角函数,写出锐角的值,根据同弧所对的圆周角和圆心角之间的关系,得到角D,根据圆内接四边形写出要求的结果.
解答:解:连接OA、OB,过O作OE⊥AB,E为垂足,则AE=BE.
在Rt△AOE中,OA=2,AE=AB=×2=

∴sin∠AOE==
∴∠AOE=60°,
∴∠AOB=2∠AOE=120°,在优弧上任取一点D(不与A、B重合),
∴∠ADB=∠AOB=60°,
∴∠ACB=180°-∠ADB=120°.
点评:本题考查圆内接四边形的性质,考查同弧所对的圆周角和圆心角之间的关系,考查直角三角形的性质,考查三角函数的定义,是一个比较简单的综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知⊙O的半径为2,弦AB的长为2
3
,点C是劣弧ACB上任一点,(点C不与A、B重合),求∠ACB.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知⊙O的半径为1,点C在直径AB的延长线上,BC=1,点P是半圆上的一个动点,以PC为边作正三角形PCD,且点D与圆心分别在PC两侧.
(1)若∠POB=θ,试将四边形OPDC的面积y表示成θ的函数;
(2)求四边形OPDC面积的最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年河北衡水中学高三上学期期中考试理科数学试卷(解析版) 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;

(Ⅱ)求sin∠ANC.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省郑州市高三第十三次调考理科数学试卷(解析版) 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;

(Ⅰ)求AM的长;

(Ⅱ)求sin∠ANC.

 

查看答案和解析>>

同步练习册答案