精英家教网 > 高中数学 > 题目详情

抛物线4x = y2的准线方程为                  .

 

【答案】

x= —1

【解析】因为抛物线的准线是,故y2=4x的准线方程是

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.
(Ⅰ)设l的斜率为1,求
OA
OB
夹角的大小;
(Ⅱ)设
FB
=λ
AF
,若λ∈[4,9],求l在y轴上截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点P(0,2)的直线l与抛物线C:y2=4x交于A、B两点,O为坐标原点.
(1)若以AB为直径的圆经过原点O,求直线l的方程;
(2)若线段AB的中垂线交x轴于点Q,求△POQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,已知椭圆C1
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,直线l:y=
12
x+b与C交于A、B两点,O为坐标原点.
(1)当直线l过抛物线C的焦点F时,求|AB|;
(2)是否存在直线l使得直线OA、OB倾斜角之和为135°,若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:
y
2
 
=4x,过点(1,0)且斜率为
3
直线交抛物线C于M、N,则|MN|=(  )

查看答案和解析>>

同步练习册答案