精英家教网 > 高中数学 > 题目详情
设函数f(x)是增函数,对于任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)证明f(x)奇函数;
(3)解不等式
1
2
f(x2)-f(x)>
1
2
f(3x).
分析:(1)利用已知条件通过x=y=0,直接求f(0);
(2)通过函数的奇偶性的定义,直接证明f(x)是奇函数;
(3)利用已知条件转化不等式.通过函数的单调性直接求解不等式
1
2
f(x2)-f(x)>
1
2
f(3x)的解集即可.
解答:解:(1)由题设,令x=y=0,
恒等式可变为f(0+0)=f(0)+f(0),解得f(0)=0,
(2)令y=-x,则由f(x+y)=f(x)+f(y)得
f(0)=0=f(x)+f(-x),即得f(-x)=-f(x),
故f(x)是奇函数
(4)由
1
2
f(x2)-f(x)>
1
2
f(3x),
f(x2)-f(3x)>2f(x),
即f(x2)+f(-3x)>2f(x),
又由已知得:f[2(x)]=2f(x)
∴f(x2-3x)>f(2x),
由函数f(x)是增函数,不等式转化为x2-3x>2x.即x2-5x>0,
∴不等式的解集{x|x<0或x>5}.
点评:本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函f(x)=ln x,g(x)=数学公式ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省宜宾市南溪一中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函f(x)=ln x,g(x)=ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

同步练习册答案