精英家教网 > 高中数学 > 题目详情
如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )

A.
B.
C.
D.
【答案】分析:通过t的增加,排除选项A、D,利用x的增加的变化率,说明余弦函数的变化率,得到选项即可.
解答:解:因为当t=0时,x=0,对应y取得1,所以选项A,D不合题意,
当t由0增加时,x的变化率由大变小,又y=cosx是减函数,所以函数y=f(t)的图象变化先快后慢,
所以选项B满足题意,C正好相反.
故选B.
点评:本题考查函数图象的变换快慢,考查学生理解题意以及视图能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知抛物线C:y2=4x,过点P(
52
,1)
的直线l与抛物线C交点A、B两点,且点P为弦AB的中点.
( I)求直线l的方程;
( II)若过点P斜率为-2的直线m与抛物线C交点A1、B1两点,求证:PA•PB=PA1•PB1
( III)过线段AB上任意一点P1(不含端点A、B)分别做斜率为k1、k2(k1≠k2)的直线l1,l2,若l1交抛物线C于A1、B1两点,l2交抛物线C于A2,B2两点,且:P1A1•P1B1=P1A2•P1B2,试求k1+k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江西)如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图。已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤x≤1,单位:s)的函数y=f(t)的图像大致为

查看答案和解析>>

科目:高中数学 来源:江西 题型:单选题

如图.已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网
精英家教网

查看答案和解析>>

同步练习册答案