| A. | ?n∈N*,Sn<an+1 | |
| B. | ?n∈N*,an•an+1≤an+2 | |
| C. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+2}$=2a${\;}_{{n}_{0}+1}$ | |
| D. | ?n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+3}$=a${\;}_{{n}_{0}+1}$+a${\;}_{{n}_{0}+2}$ |
分析 由已知可得:an=2n-1,${S}_{n}=\frac{{2}^{n}-1}{2-1}$=2n-1.分别代入化简判断即可得出.
解答 解:由已知可得:an=2n-1,${S}_{n}=\frac{{2}^{n}-1}{2-1}$=2n-1.
A.?n∈N*,Sn=2n-1<2n=an+1,因此正确;
B.?n∈N*,an•an+1=22n-1,an+2=2n+1,当n>2时,22n-1-2n+1=2n(2n-1-2)>0,∴an•an+1=22n-1>an+2,因此不正确;
C.an+an+2=2n-1+2n+1=2n×$\frac{5}{2}$,2an+1=2n+1,∴an+an+2-2an+1=${2}^{n}×\frac{3}{2}$-1>0,因此不存在n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+2}$=2a${\;}_{{n}_{0}+1}$,因此不正确;
D.an+an+3=2n-1+2n+2=2n×$\frac{9}{2}$,an+an+2=2n-1+2n+1=2n×$\frac{5}{2}$,∴an+an+3-(an+an+2)=2n×2>0,因此不存在n0∈N*,a${\;}_{{n}_{0}}$+a${\;}_{{n}_{0}+3}$=a${\;}_{{n}_{0}+1}$+a${\;}_{{n}_{0}+2}$,因此不正确.
故选:A.
点评 本题考查了等差数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)(2) | B. | (3)(4) | C. | (2)(4) | D. | (1)(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com