精英家教网 > 高中数学 > 题目详情

已知函数数学公式为定义在R上的奇函数,
(1)求a的值并求y=f(x)的单调区间;
(2)当x∈[0,m]时,求函数的值域.

解:(1)因为函数是R上奇函数,
所以恒成立,
化简得,所以
可得f(x)=x3-3x,f′(x)=3(x+1)(x-1),
令f′(x)=3(x+1)(x-1)>0,单增区间为(-∞,-1),(1,+∞);
令f′(x)=3(x+1)(x-1)<0,单减区间为(-1,1)
(2)当m∈(0,1]时,f′(x)<0,f(x)在[0,m]单减,
值域为[f(m),f(0)]=[m3-3m,0]
时,f′(1)=0,f(x)在x=1处取得极小值,
值域为[f(1),f(0)]=[-2,0]
时,f(x)在x=1处取得最小值,
在x=m处取得最大值,值域为[f(1),f(m)]=[-2,m3-3m]
分析:(1)根据题意,可得恒成立,分析可得a的值,进而可得f(x)=x3-3x,求导可得单调区间;
(2)由(1)的单调区间与单调性,分两种情况讨论m的值,分析可得答案.
点评:本题考查函数的奇函数性质的运用,解题时,注意其图象对称性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数为定义在R上的奇函数,当时,,求在R上的解析式,并判断函数的零点的个数。

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三第7次月考数学文卷 题型:选择题

 

已知函数为定义在R上的奇函数,当时,为常数),则                                                            

   A.                    B.                   C. 1                   D. 3           (    )

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三第7次月考数学理卷 题型:选择题

已知函数为定义在R上的奇函数,当时,为常数),则

                                                                                                                                         (    )

       A.                   B.                   C. 1                    D.3

 

查看答案和解析>>

科目:高中数学 来源:2010年陕西省高三最后冲刺数学理工类模拟试卷 题型:解答题

(本题满分12分)已知函数为定义在R上的奇函数,且当时,

(1)   求的表达式;

(2)   若关于的方程有解,求实数的范围。

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆一中高三(下)4月月考数学试卷(文科)(解析版) 题型:解答题

已知函数为定义在R上的奇函数,
(1)求a的值并求y=f(x)的单调区间;
(2)当x∈[0,m]时,求函数的值域.

查看答案和解析>>

同步练习册答案