精英家教网 > 高中数学 > 题目详情
定义:若函数f(x)对于其定义域内的某一数x0,有 f (x0)=x0,则称x0是f (x)的一个不动点.已知函数f(x)=ax2+(b+1)x+b-1 (a≠0).
(Ⅰ)当a=1,b=-2时,求函数f(x)的不动点;
(Ⅱ)若对任意的实数b,函数f(x)恒有两个不动点,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若y=f(x)图象上两个点A、B的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
a5a2-4a+1
对称,求b的最小值.
分析:(I)将a=1,b=-2代入f(x)=ax2+(b+1)x+b-1 (a≠0),求出f(x),令f(x)=x,解方程求不动点即可;
(II)由ax2+(b+1)x+b-1=x有两个不动点,即ax2+bx+b-1=0有两个不等实根,可通过判别式大于0得到关于参数a,b的不等式b2-4ab+4a>0,由于此不等式恒成立,配方可得b2-4ab+4a=(b-2a)2+4a-4a2>0恒成立,将此不等式恒成立转化为4a-4a2>0即可.
(III)由于本小题需要根据两个点A、B的坐标转化点关于线的对称这一条件,故可以先设出两点的坐标分别为A(x1,x1),B(x2,x2)(x1≠x2),由斜率公式求得kAB=1,又对称性知直线y=kx+
a
5a2-4a+1
的斜率k=-1将其代入直线的方程,可以得到x1+x2=
a
5a2-4a+1
,由此联想到根与系数的关系,由(II)知,x1、x2应是方程ax2+bx+b-1=0的根,故又可得x1+x2=-
b
a
,至此题设中的条件转化为-
b
a
=
a
5a2-4a+1
,观察发现参数b可以表示成参数a的函数即b=-
a2
5a2-4a+1
,至此,求参数b的问题转化为求b关于a的函数最小值的问题.
解答:解:(Ⅰ)当a=1,b=-2时,有f (x)=x2-x-3,
令x2-x-3=x,化简得:x2-2x-3=0,
解得:x1=-1,或x2=3
故所求的不动点为-1或3.(4分)

(Ⅱ)令ax2+(b+1)x+b-1=x,则ax2+bx+b-1=0①
由题意,方程①恒有两个不等实根,所以△=b2-4a(b-1)>0,
即b2-4ab+4a>0恒成立,(6分)
整理得b2-4ab+4a=(b-2a)2+4a-4a2>0,
故4a-4a2>0,即0<a<1(8分)

(Ⅲ)设A(x1,x1),B(x2,x2)(x1≠x2),则kAB=1,∴k=-1,
所以y=-x+
a
5a2-4a+1
,(9分)
又AB的中点在该直线上,所以
x1+x2
2
=-
x1+x2
2
+
a
5a2-4a+1

∴x1+x2=
a
5a2-4a+1

而x1、x2应是方程①的两个根,所以x1+x2=-
b
a
,即-
b
a
=
a
5a2-4a+1

b=-
a2
5a2-4a+1
(12分)
=-
1
(
1
a
)
2
-4(
1
a
)+5
=
1
(
1
a
-2)
2
+1

∴当a=
1
2
∈(0,1)时,bmin=-1.(14分)
点评:本题考点是二次函数的性质,主要考查二次函数、方程的基本性质、不等式的有关知识,同时考查函数思想、数形结合思想、逻辑推理能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,
π
2
)
上不是凸函数的是(  )
A、f(x)=sinx+cosx
B、f(x)=lnx-2x
C、f(x)=-x3+2x-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=[(f′(x)]′.若f(x)>0在D上恒成立,则称f(x)在D上为凹函数.以下四个函数在(0,
π
2
)
上不是 凹函数的是(  )
A、f(x)=1-sinx
B、f(x)=ex-2x
C、f(x)=x3-x2-1
D、f(x)=-xe-x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)定义:若函数f(x)的图象经过变换T后所得图象对应函数的值域与f(x)的值域相同,则称变换T是f(x)的同值变换.下面给出四个函数及其对应的变换T,其中T不属于f(x)的同值变换的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为上凸函数.以下四个函数在(0,
π
2
)
上不是上凸函数的是(  )

查看答案和解析>>

同步练习册答案