精英家教网 > 高中数学 > 题目详情
14.已知映射f:R→R,x→2x+1,求得f(x)=7时的原象x是(  )
A.1B.2C.3D.4

分析 由已知可得f(x)=2x+1,由f(x)=7可得对应的x值.

解答 解:∵映射f:R→R,x→2x+1,
即f(x)=2x+1,
令f(x)=7,
解得:x=3,
故选:C

点评 本题考查的知识点是映射,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知直线2x+y-5=0与x-2y=0交于点P,直线l:3x-y-7=0.求:
(1)过点P与直线l平行的直线方程;
(2)过点P与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=2,$\frac{3}{2}$cos2B+5cosB-$\frac{1}{2}$=0,且点D在线段BC上.
(1)若∠ADC=$\frac{3π}{4}$,求AD的长;
(2)若BD=2DC,$\frac{sin∠BAD}{sin∠CAD}$=4$\sqrt{2}$,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(α)=$\frac{sin(2π-α)cos(\frac{π}{2}+α)}{cos(-\frac{π}{2}+α)tan(π+α)}$,则f($\frac{π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求值域:
(1)y=$\sqrt{2}$cos(2x-$\frac{π}{4}$),x∈[-$\frac{π}{8}$,$\frac{π}{2}$];
(2)y=-3sin2x-4cosx+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一质点做直线运动,在x(单位:s)时离出发点的距离(单位:m)为f(x)=$\frac{2}{3}$x3+x2+2x.
(1)求质点在第1s内的平均速度;
(2)求质点在第1s末的瞬时速度;
(3)经过多长时间质点的运动速度达到14m/s?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若圆x2+y2-ax+2y+1=0与圆x2+y2=1关于直线y=x-l对称,过点C(-a,a)的圆P与y轴相切,则圆心P的轨迹方程为y2+4x-4y+8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=log2(ax2-x-2a)在区间(-∞,-1)上是单调减函数,则实数a的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线y2=4x,直线l过定点P(2,1),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;有两个公共点;没有公共点.

查看答案和解析>>

同步练习册答案