精英家教网 > 高中数学 > 题目详情
9.若函数y=($\frac{1}{2}$)x-m的图象不经过第四象限,则m∈(-∞,0].

分析 y=($\frac{1}{2}$)x-m的图象可看做y=($\frac{1}{2}$)x上下平移|m|个单位得到的,结合指数函数图象可得出m的范围.

解答 解:∵y=($\frac{1}{2}$)x-m的图象可看做y=($\frac{1}{2}$)x上下平移|m|个单位得到的,
且函数y=($\frac{1}{2}$)x-m的图象不经过第四象限,
∴-m≥0,即m≤0,
故答案为:(-∞,0].

点评 本题考查了函数图象变换,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.直线y=1-x交椭圆mx2+ny2=1(m>0,n>0,且m≠n)于M、N两点,弦MN的中点为P,O为坐标原点,若直线OP的斜率为$\frac{1}{2}$,且以MN为直径的圆经过坐标原点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非空集合A={x|1-m≤x≤2m-1},B={x|-2<x≤5},若A∩B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知过点A(0,1)且斜率为k的直线l与圆(x-2)2+(y-3)2=1交于M(x1,y1),N(x2,y2)两点.
(1)求k的取值范围:
(2)若x1x2+y1y2=12,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若$\frac{2sinα+cosα}{2cosα-sinα}$=2,求sinα+cosα的值及2sinαcosα+cos2α-2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.使奇函数f(x)=sin(2x+α)在[-$\frac{π}{4}$,0]上为减函数的α的值可以是(  )
A.0B.$\frac{π}{2}$C.πD.$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个无穷等比数列{an}中an>0,且若a2+a3+a4+…+a${\;}_{{n}_{\;}}$+…≤$\frac{{a}_{1}}{2}$,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线 ρ=8sinθ和 ρ=-8cosθ?(ρ>0)的交点的极坐标是(4$\sqrt{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,对于任意x∈R,同时满足条件f(x)=f(-x)和f(x+π)=f(x)的函数是(  )
A.f(x)=sinxB.f(x)=sin2xC.f(x)=cosxD.f(x)=cos2x

查看答案和解析>>

同步练习册答案