精英家教网 > 高中数学 > 题目详情
11.已知sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则sin(2α+$\frac{π}{6}$)的值为$\frac{7}{9}$.

分析 利用诱导公式,二倍角的余弦函数公式化简所求结合已知即可计算得解.

解答 解:∵sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,
∴sin(2α+$\frac{π}{6}$)=cos[$\frac{π}{2}$-(2α+$\frac{π}{6}$)]=cos(2α$-\frac{π}{3}$)=cos[2(α-$\frac{π}{6}$)]=1-2sin2(α-$\frac{π}{6}$)=1-2×($\frac{1}{3}$)2=$\frac{7}{9}$.
故答案为:$\frac{7}{9}$.

点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想和运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在区间[0,π]上随机取一个数θ,则使$\sqrt{2}≤\sqrt{2}sinθ+\sqrt{2}cosθ≤2$成立的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两点A(-1,5),B(3,7),圆C以线段AB为直径.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:x+y-4=0与圆C相交于M,N两点,求弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=2,an+1=$\frac{n{a}_{n}-1}{n+1}$(n∈N+).
(1)计算a2,a3,a4,并猜测出{an}的通项公式;
(2)用数学归纳法证明(1)中你的猜测.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{2\sqrt{2}cosx,x≤0}\end{array}\right.$,则f[f(-$\frac{π}{4}$)]的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|f(x)=lg(x-1)+$\sqrt{2-x}$},集合B={y|y=2x+a,x≤0}.
(1)若a=$\frac{3}{2}$,求A∪B;
(2)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题p:若λ$\overrightarrow{a}$=0,则$\overrightarrow{a}$=0;命题q:?x0>0,使得x0-1-lnx0=0,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是(  )
①若m⊥α,n⊥m,则n∥α;       
②若α∥β,n⊥α,m∥β,则n⊥m;
③若m∥α,n⊥β,m⊥n,则α⊥β;
④若m∥α,n⊥β,m∥n,则α⊥β.
A.②③B.③④C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=$\sqrt{2}$,F是BC的中点.
(Ⅰ)求证:DA⊥平面PAC
(Ⅱ)PD的中点为G,求证:CG∥平面PAF
(Ⅲ)求三棱锥A-CDG的体积.

查看答案和解析>>

同步练习册答案