精英家教网 > 高中数学 > 题目详情
在△ABC中,设角A、B、C的对边分别为a、b、c,若sinA=sinB=-cosC.
(1)求角A、B、C的大小;
(2)若a=2,求△ABC的面积.
分析:(1)由正弦定理、二倍角公式、诱导公式,结合题中的条件可得sinA=
1
2
,故有A=B=
π
6
C=
3

(2)在△ABM中,由于a=2,故 b=2,故△ABC的面积 S=
1
2
ab•sinC
,运算求得结果.
解答:解:(1)由sinA=sinB 和正弦定理可得a=b,故A=B,
所以C=π-2A,又sinA=-cosC得sinA=cos2A,即2sin2A+sinA-1=0,
解得sinA=
1
2
,sinA=-1(舍).
A=B=
π
6
C=
3

(2)在△ABC中,由于已知a=2,且A=B=
π
6
,故△ABC是等腰三角形,故 b=2.
C=
3
,故△ABC的面积 S=
1
2
ab•sinC
=
1
2
×2×2×
3
2
=
3
点评:本题考查正弦定理、诱导公式、二倍角公式的应用,根据三角函数的值求角,求出sinA=
1
2
是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
cosC
cosB
=
3a-c
b

(1)求sinB的值;
(2)若b=4
2
,且a=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A,B,C的对边分别为a,b,c,已知b2-bc-2c2=0,a=
6
cosA=
7
8
,则b=(  )
A、2B、4C、3D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)在△ABC中,设角A、B、C所对的边分别是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,则∠C=
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.
(I)求角C的大小;
(Ⅱ)若c=
3
,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
a
cosA
=
b
cosB
,则△ABC一定是(  )

查看答案和解析>>

同步练习册答案