精英家教网 > 高中数学 > 题目详情
三角形三边长为5,12,13,则它的外接圆圆心到顶点的距离为
13
2
13
2
分析:由勾股定理的逆定理,得出三角形是直角三角形,斜边长为13恰好等于外接圆直径,由此即可得到三角形的外接圆圆心到顶点的距离.
解答:解:∵三边长为5、12、13,不妨设a=5,b=12,c=13
∴由a2+b2=132=c2
得三角形是以C为直角的Rt△,它的外接圆圆心到顶点的距离就是外接圆的半径R
∵Rt△ABC中,外接圆的半径R=
1
2
c
=
13
2

∴三角形的外接圆圆心到顶点的距离为
13
2

故答案为:
13
2
点评:本题给出三角形的三条边的长度,求它的外接圆半径.着重考查了勾股定理的逆定理和三角形的外接圆计算等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是(  )
A、
1
6
B、
1
12
C、
1
36
D、
5
36

查看答案和解析>>

科目:高中数学 来源: 题型:

钝角三角形三边长分别为2,3,x,则x的取值范围是
(1,
5
)∪(
13
,5)
(1,
5
)∪(
13
,5)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是(  )
A.
1
6
B.
1
12
C.
1
36
D.
5
36

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是(  )
A.
1
6
B.
1
12
C.
1
36
D.
5
36

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省台州中学高一(上)期中数学试卷(解析版) 题型:选择题

将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案