精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=|2x+3|+|2x-1|.
(Ⅰ)求不等式f(x)<8的解集;
(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.

分析 (Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;(Ⅱ)求出f(x)的最小值,解关于m的不等式,解出即可.

解答 解:(Ⅰ)不等式f(x)<8,即|2x+3|+|2x-1|<8,
可化为①$\left\{\begin{array}{l}{x<-\frac{3}{2}}\\{-2x-3-2x+1<8}\end{array}\right.$或②$\left\{\begin{array}{l}{-\frac{3}{2}≤x≤\frac{1}{2}}\\{2x+3-2x+1<8}\end{array}\right.$或③$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{2x+3+2x-1<8}\end{array}\right.$,…(3分)
解①得-$\frac{5}{2}$<x<-$\frac{3}{2}$,解②得-$\frac{3}{2}$≤x≤$\frac{1}{2}$,解③得$\frac{1}{2}$<x<$\frac{3}{2}$,
综合得:-$\frac{5}{2}$<x<$\frac{3}{2}$,即原不等式的解集为{x|-$\frac{5}{2}$<x<$\frac{3}{2}$}.…(5分)
(Ⅱ)因为∵f(x)=|2x+3|+|2x-1|≥|(2x+3)-(2x-1)|=4,
当且仅当-$\frac{3}{2}$≤x≤$\frac{1}{2}$时,等号成立,即f(x)min=4,…(8分)
又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤-$\frac{5}{3}$或m≥1.…(10分)

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知数列{an}为等差数列,若a1=3,a2+a3=12,则a2=(  )
A.27B.36C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若椭圆$\frac{{x}^{2}}{k+4}$+$\frac{{y}^{2}}{12}$=1的离心率为$\frac{1}{2}$,则实数k的值为5或12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x≤1}\\{y≥a}\end{array}\right.$,若μ=2x-y的最小值为-4,则实数a等于(  )
A.-4B.-3C.-2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xOy中,双曲线$\frac{x^2}{3}-{y^2}=1$的一条准线与抛物线y2=2px(p>0)的准线重合,则实数p的值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则该三角形的形状是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{2}{{2}^{x}+1}$+sinx,则f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x+y-4≤0\\ y-1≥0\\ x-1≥0\end{array}\right.$,则z=xy的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.“?x∈R,x2-x≥0”的否定是(  )
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

查看答案和解析>>

同步练习册答案