精英家教网 > 高中数学 > 题目详情

对于无穷等比数列,若,则等于

[    ]

A.8   B.16    C.32    D.不存在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为a1,公差为d的无穷等差数列{an}的子数列问题,为此,他取了其中第一项a1,第三项a3和第五项a5
(1)若a1,a3,a5成等比数列,求d的值;
(2)在a1=1,d=3 的无穷等差数列{an}中,是否存在无穷子数列{bn},使得数列(bn)为等比数列?若存在,请给出数列{bn}的通项公式并证明;若不存在,说明理由;
(3)他在研究过程中猜想了一个命题:“对于首项为正整数a,公比为正整数q(q>1)的无穷等比数列{cn},总可以找到一个子数列{bn},使得{dn}构成等差数列”.于是,他在数列{cn}中任取三项ck,cm,cn(k<m<n),由ck+cn与2cm的大小关系去判断该命题是否正确.他将得到什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐汇区一模)对于数列{xn},从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列.某同学在学习了这一个概念之后,打算研究首项为正整数a,公比为正整数q(q>0)的无穷等比数列{an}的子数列问题.为此,他任取了其中三项ak,am,an(k<m<n).
(1)若ak,am,an(k<m<n)成等比数列,求k,m,n之间满足的等量关系;
(2)他猜想:“在上述数列{an}中存在一个子数列{bn}是等差数列”,为此,他研究了ak+an与2am的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3)他又想:在首项为正整数a,公差为正整数d的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•朝阳区二模)设A是满足下列两个条件的无穷数列{an}的集合:
an+an+22
an+1
;     ②an≤M.其中n∈N*,M是与n无关的常数.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈A;
(Ⅱ)对于(Ⅰ)中数列{an},正整数n1,n2,…,nt…(t∈N*)满足7<n1<n2<…<nt<…(t∈N*),并且使得a6a7an1an2,…,ant,…成等比数列. 若bm=10m-nm(m∈N*),则{bm}∈A是否成立?若成立,求M的取值范围,若不成立,请说明理由;
(Ⅲ)设数列{cn}的各项均为正整数,且{cn}∈A,证明:cn≤cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若C为常数,则C=___________;?

(2)=_________(其中k>0为常数);?

(3)若|q|<1,q为常数,则qn=_________.?

特别地,对于无穷等比数列,若公比|q|<1,则其所有项的和S=_________.

查看答案和解析>>

同步练习册答案