分析 分析知$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$$\frac{2^n-3^n}{2^n+3^n}$=$\underset{lim}{n→∞}$$\frac{(\frac{2}{3})^n-1}{(\frac{2}{3})^n+1}$.
解答 解:当n→∞时,只需考虑an=$\frac{2^n-3^n}{2^n+3^n}$(n≥2015),
则$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$$\frac{2^n-3^n}{2^n+3^n}$=$\underset{lim}{n→∞}$$\frac{(\frac{2}{3})^n-1}{(\frac{2}{3})^n+1}$,
其中,$\underset{lim}{n→∞}$$(\frac{2}{3})^n$=0,
所以,$\underset{lim}{n→∞}$$\frac{(\frac{2}{3})^n-1}{(\frac{2}{3})^n+1}$=$\frac{0-1}{0+1}$=-1,
故填:-1.
点评 本题主要考查了极限及其运算,对于分段数列,其极限只需考虑n→∞时对应的分段,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {0,1} | C. | {1,2} | D. | {0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com