精英家教网 > 高中数学 > 题目详情

 若是数列{an}的前n项和,且=            .

 

【答案】

 33   

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a•bx的图象过点A(4、
14
)和B(5,1).
(1)求函数f(x)的解析式;
(2)记an=log2f(n)、n是正整数,Sn是数列{an}的前n项和,解关于n的不等式anSn≤0;
(3)对于(2)中的an与Sn,整数104是否为数列{anSn}中的项?若是,则求出相应的项数;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N* ).
(1)判断数列{
an+2
2n+1
}
是否为等比数列?若不是,请说明理由;若是,试求出通项an;.
(2)如果a=1时,数列{an}的前n项和为Sn,试求出Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•深圳二模)已知数列{an}满足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)试判断数列{
an+2
2n+1
}
是否为等比数列?若不是,请说明理由;若是,试求出通项an
(Ⅱ)如果a=1时,数列{an}的前n项和为Sn.试求出Sn,并证明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).

查看答案和解析>>

同步练习册答案